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ABSTRACT 

The numerical study of transient incompressible fluid flows is greatly complicated 
by the presence of free surfaces. One method of treating such problems is the Marker- 
and-Cell technique, which in its original form, used simple approximations for the 
free-surface boundary conditions. These approximations are found to be inaccurate 
at low Reynolds numbers (R 5 10). With a simple modification it is possible to approxi- 
mate the complete normal stress condition. This modification is shown to have a pro- 
nounced effect on some low-Reynolds-number flows. 

I. 1~TRoDucT10~ 

The numerical solution of viscous fluid flow problems is complicated by the 
presence of free surfaces. There are two reasons for this. First, there must be some 
means of recording the position of the free surface, and second, the free-surface 
boundary conditions must be imposed. We shall discuss the free surface problem 
in connection with the Marker-and-Cell (MAC) computing method [l]. 

The MAC method is a finite difference technique for solving the time-dependent 
Navier-Stokes equations. These equations for two-dimensional flows are 

where p is the ratio of pressure to constant density, g, and g, are the x and y 
components of body acceleration, and v is the kinematic viscosity coefficient. The 

1 Work performed under the auspices of the United States Atomic Energy Commission. 
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MAC method is based on an Eulerian network of rectangular cells, with flow 
variables recorded at the locations shown in Fig. 1. Just as the differential equations 
of motion (1) are statements of the conservation of mass and momentum, the 
MAC finite-difference equations express these conservation principles for each 
cell, or combination of cells, in the computing mesh. Complete details of the 
difference equations can be found in Reference [l]. They will not be needed here. 
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FIG. 1. Typical cell arrangement for MAC. 

In addition to the flow variables recorded for each Eulerian cell, there are also 
recorded the coordinates of selected points distributed throughout the fluid. These 
coordinates can be thought of as belonging to massless particles that move about 
with the fluid. They are referred to as marker particles, since they mark the flow of 
fluid much as aluminum dust or hydrogen bubbles are used in an actual laboratory 
experiment. Thus, the marker particles used in MAC solve the first of the free-sur- 
face problems; they indicate which Eulerian cells contain the surface. 

The second problem, that of satisfying the free-surface boundary conditions, is 
much harder. The boundary conditions are that the normal and tangential stresses 
at the surface must vanish [2]. To satisfy these conditions correctly, the slope of 
the surface must be known. The MAC technique in its original form used simple 
approximations for these conditions. The normal stress condition was replaced by 
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a zero surface pressure. This is correct only in the limit of zero viscosity. The 
tangential stress condition was replaced by two conditions: the fluid incompres- 
sibility in surface cells, and the vanishing of the normal derivative of the fluid 
velocity tangential to the surface. 

In this paper we see that these approximate boundary conditions are adequate 
except for very-low-Reynolds-number flows. A simple modification is described 
for improving the normal stress condition for small Reynolds numbers, and two 
examples are shown illustrating the effects of this improvement. 

If it is desired to include surface tension forces, then one must also know the 
curvature of the surface. This difficult problem is not treated here, but is considered 
in Reference [3]. 

In Section II a brief description is given of the flow problem used to study the 
free-surface boundary conditions. Computer-generated results show the failure of 
the approximate boundary conditions at low Reynolds numbers. In Section III the 
improved free-surface treatment is described and applied to two examples. 

II. THE VISCOUS BORE 

A problem that nicely illustrates the effects of free-surface boundary conditions 
is the formation of a viscous bore. As an idealization, a bore is a step discontinuity 
in the surface height of an incompressible fluid. A bore is the incompressible 
analog of a shock wave in a compressible fluid. The jump conditions relating 
uniform fluid states on either side of the bore are derived from the requirements 
of mass and momentum conservation. Referring to Fig. 2 these conditions are [4] 

u1 = (1 - $-) v, 

v=g* 2 )] 3 [ ( 
ho + h, 1/Z 

1 

(2) 

where g is the downward acceleration of gravity. 
As a consequence of (2) it is easy to show that the fluid must lose kinetic energy 

in the bore transition. Usually, the energy lost is accounted for by the presence of 
turbulence at the bore front. The tendency to a more random velocity field behind 
the bore is analogous to the increase in entropy in a shock transition. The turbu- 
lence kinetic energy is continually transformed into heat by the action of molecular 
viscosity. However, at sufficiently low Reynolds numbers, there can be enough 
viscous dissipation of mean kinetic energy in a bore to preclude the development 
of turbulence and keep the flow laminar. 

To test the MAC method, we studied the formation of bores with Reynolds 



406 HIRT AND SHANNON 
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FIG. 2. The idealized bore. 

numbers from 4.33 to 79.25. (Reynolds numbers refer to the upstream flow height 
and upstream velocity of flow relative to the bore front.) 

In the calculations reported the fluid was allowed to slip freely along the bottom 
boundary of the computational mesh. Although this does not correspond to 
reality at the low Reynolds numbers considered, it does yield a useful test problem 
for checking the MAC method. It isolates one of the two ways in which viscosity 
can manifest itself; a procedure difficult to accomplish experimentally. 

Figure 3 shows the fluid configuration of a bore at R = 79.25. Large eddies are 
apparent at the bore front, indicating the early stages in transition to turbulence. 
The calculational results, however, do not depict true turbulence for two reasons. 

FIG. 3. Bore at R = 79.25 showing large eddy structure, Configuration shown at t = 11.00. 

First, the resolution of the .computation region is too coarse, 23 by 100 cells. 
Second, the calculations are two-dimensional while true turbulence is intimately 
dependent on three-dimensional motion. Even so, the bore has the correct height 
and speed expected from the ideal theory (2). 

The results for the R = 79.25 bore, Fig. 3, are to be compared with those in 
Fig. 4, which show a bore at R = 4.33. The flow in this instance is clearly laminar. 
The transition from laminar to turbulent flow occurs at a Reynolds number 
between 20 and 30. 

Unfortunately, the results shown in Fig. 4 are not correct. According to (2), the 
height of the fluid behind the bore should be 1.5, while the value calculated is 1.4. 
Also the bore speed should be 0.577, which is less than the calculated value, 
0.652. These results show that momentum is not conserved. The source of this 
discrepancy lies in the incorrect treatment of the free-surface boundary conditions. 
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FIG. 4. Bore at R = 4.33 calculated without free surface correction. Configuration shown 
at I = 11.00. 

III. FREE-SURFACE BOUNDARY CONDITIONS 

The correct free-surface boundary conditions are the vanishing of the normal 
and tangential stresses. To express these conditions in differential form we need 
the stress tensor for an incompressible fluid [2] 

uij= -+j+v i 
au, aui ax.+- 

z 1 a+ 7 

where 6ij is the Kronecker delta. Physically --cT~~ is the amount of ith-component 
momentum flowing per unit time through unit area normal to the jth direction. 
Since there is no flux of momentum through a free surface, the boundary condition 
is 

cri3nf = 0, (4) 

where nj is a unit normal to the surface. 
For a two-dimensional surface, y = T,@, t), the boundary conditions (4) take the 

form 

92 - 2v [nfi.Z$ + (au au) av 0 np, q+z +ndbG 1 = 3 

v [2n,)n, $$ + &my + nfld (5 + -$I + 2nfl~ $1 = O* 
(5) 

The x and y components of the unit outward normal vector to the surface are 

12, = 2 [l + (gr]-1’2, 

n, = [l + (-$-)s]-l”. 
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The components of the tangent vector to the surface are 

m,=n,, my = --n,. 

If the curvature of the surface is small we can approximate these conditions by 
the simpler expressions 

9) - 2v(au&) = 0, (6) 

(7) 

where n refers to the local outward normal direction of the free surface and m to 
the tangential direction, 

In the original MAC method [l] the normal stress condition (6) was simply 
replaced by y = 0. The viscous contribution was omitted. In place of the tangen- 
tial stress condition (7), the MAC method imposes the condition of incompressibi- 
lity in each surface cell. This is an approximation, since the latter condition 
should be imposed only in that region of the surface cell actually occupied by 
fluid. In addition, when velocities are needed in cells outside the free surface, these 
velocities are chosen equal to the corresponding velocities inside the surface. The 
result is an approximation to au,,@ = 0, which is not quite the tangential stress 
condition (7). 

Keeping these approximations in mind, and using the physical interpretation of 
u~~ , we can readily explain why the bore in Fig. 4 is moving too fast. At the front 
of the bore it is apparent that au,/an is positive. The calculation used y = 0 there, 
but according to (6) the pressure should be positive. Thus, the effective normal 
stress at the surface is equal to 

u - 2v(au,/an), nn - 

which corresponds to a flux of normal momentum into the fluid. This causes the 
bore to move forward too rapidly. It follows also that the fluid height behind the 
bore is too low. 

It is relatively easy to modify the pressure at the surface to satisfy the correct 
normal stress condition. There are three cases to consider, which correspond to a 
surface cell having empty cells on one, two, or three sides. 

For a surface cell (i,j) having one side adjacent to an empty cell, say the side 
at (i, j + $), see Fig. 1, the velocity on this side is chosen such that V * u is zero for 
the cell. [l] The pressure for the cell is then set equal to 

2v $-l/2 I&- = & (v;+1/2 - ( ). 03) 

For a surface cell with three open sides or for a cell with two open sides that are 
opposite one another the pressure for the cell is set equal to zero. 
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For a cell with two open sides that are adjacent, the outward normal direction 
is assumed to be at 45” between the open sides. In this case the normal stress 
condition (5) reduces to 

where the sign is chosen equal to the sign of ngn, . The velocity derivatives in (9) are 
easily approximated by local finite differences. For example, if the open sides are 
at (i, j + 8) and (i + $,j), then n, and n, are positive and the pressure for cell 
(i,j) is given by 

Similar expressions are easily written down for other combinations of two adjacent 
open sides. 

These modifications of the normal stress conditions were incorporated into the 
MAC method and the bore calculation in Fig. 4 was repeated. The new results are 
given in Fig. 5. The bore speed is 0.556, which is now less than the theoretical 
value, 0.577. The bore front is also flatter than previously calculated, but the 
overshoot in surface elevation is still present. 

It appears likely that this overshoot, and also the slow bore speed, result from 
inaccuracies in the tangential stress condition. The argument for this is much the 
same as that used for the normal stress errors. The calculation more or less appro- 
ximates the tangential stress condition by au,,@ = 0. According to (7) this results 
in a surface tangential stress, 

u,, w v(at4,jam). 

FIG. 5. Bore at R = 4.33 calculated with free surface correction. Configuration shown 
at t = 11.00; compare with Fig. 4. 
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At the bore front &,/am is negative which means there is a flux of tangential 
momentum into the surface. Such a flux will slow the bore down and contribute 
to the overshoot in elevation. 

It would, of course, be desirable to devise a way of satisfying both the normal 
and tangential stress conditions. However, it appears that this requires a more 
accurate knowledge of surface position and shape than is presently determinable 
in the basic MAC method. On the other hand, it is emphasized that the free- 
surface conditions as treated in the original MAC method are accurate for many 
purposes. Viscous effects on the surface stress are significant only in very-low- 
Reynolds-number flows; for the bore calculations reported here, the corrections 
are significant only at Reynolds numbers less than about 10. 

An additional illustration of the influence of free-surface boundary conditions 
is given by the “teapot” effect. Suppose viscous fluid is allowed to run down the 
side of a wall under the action of gravity. If the wall terminates in a sharp corner, 

b 

Fb. 6. Teapot effect calculation at R = 2.0; (a) without free-surface correction, (b) with 
free-surface correction. 
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fluid falling off the wall will bend in underneath the corner, like the dribbling 
observed at the spout of a teapot. 

In Fig. 6a a MAC calculation is shown in which fluid has been input along the 
top boundary of the computational mesh. The fluid is input with a uniform down- 
ward velocity, but it quickly establishes a boundary layer along the wall on its 
right side. The retarding influence of the wall is just balanced by the downward 
acceleration of gravity. The fluid fictitiously swings outward from the wall at the 
corner. However, the calculation neglected the viscous contribution to the normal 
stress condition. Since the Reynolds number for the flow, based on input mass 
flux, is 2.0, viscous contributions to the free-surface boundary conditions are not 
negligible. 

Figure 6b shows the same problem repeated with the improved normal stress 
condition. The flow swings under the corner, exhibiting the “teapot” effect. It is 
a simple matter to see why this happens. The incorrect result, Fig. 6(a), is caused 
by a flux of normal momentum through the free surface in the corner region. With 
the normal stress correction described in this paper, the fluid surface pressure at the 
corner is negative, and since the surface pressure on the left side of the stream is 
nearly zero there is a pressure gradient across the stream that pushes it underneath 
the corner. 
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